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Abstract

Here we introduce a novel multi-scale heat kernel based regional shape statistical approach that 

may improve statistical power on the structural analysis. The mechanism of this analysis is driven 

by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information 

in the constructed tetrahedral mesh. In order to capture profound volumetric changes, we first use 

the volumetric Laplace-Beltrami operator to determine the point pair correspondence between two 

boundary surfaces by computing the streamline in the tetrahedral mesh. Secondly, we propose a 

multi-scale volumetric morphology signature to describe the transition probability by random walk 

between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point 

distribution model is applied to reduce the dimensionality of the volumetric morphology 

signatures and generate the internal structure features. The multi-scale and physics based internal 

structure features may bring stronger statistical power than other traditional methods for 

volumetric morphology analysis. To validate our method, we apply support vector machine to 

classify synthetic data and brain MR images. In our experiments, the proposed work outperformed 

FreeSurfer thickness features in Alzheimer's disease patient and normal control subject 

classification analysis.
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1 Introduction

In Alzheimer's disease (AD) research, several MRI-based measures of atrophy, including 

cortical thickness, hippocampal atrophy or ventricular enlargement, are closely correlated 

with changes in cognitive performance, supporting their validity as biomarkers of early AD 

identification. As we know, the MRI imaging measurement of medial temporal atrophy is 

not sufficiently accurate on its own to serve as an absolute diagnostic criterion for the 

clinical diagnosis of AD at the mild cognitive impairment (MCI) stage. A key research 

question is how to select the features which have a high discriminatory power. For example, 
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the cortical thickness was the popular feature which has been used to capture the difference 

between different clinical groups. Currently, there are two different computational 

paradigms on brain cortical thickness, with methods generally classified as either surface or 

voxel based [1, 2]. However, all measured distances are unitary distances between boundary 

points and they are unitary values that suggest only global trends and cannot capture 

topological variations (e.g. the regional information along the connecting curves is not 

considered). To address these difficulties, we introduce diffusion geometry methods to 

compute multi-scale intrinsic volumetric morphology signatures. Because the 2D shape 

analysis cannot offer the internal volumetric structure information within the solid volume 

such as brain grey matter. Based on some recent work [3,4] which studied volumetric heat 

kernel and the volumetric Laplace-Beltrami operator [5], here we propose a multi-scale heat 

kernel statistic to describe the transition probability by random walk between white-grey 

matter and CSF-grey matter boundary point pairs. With the tetrahedral mesh representation, 

our work may achieve subvoxel numerical accuracy. They provide quantitative measures of 

brain changes which are important for evaluating disease burden, progression and response 

to interventions.

In our work, a new set morphological descriptors is used to represent the volumetric 

structure information, which depends on heat transmission time and is somewhat influenced 

by the topological properties on the heat transmission path. Following that, a point 

distribution model (PDM) is applied to reduce the feature dimensionality to make 

classification feasible. With the support vector machine (SVM), we extract the most 

discriminative features that expose the brain abnormal changes. We also test the 

effectiveness of our framework in classification experiments.

A major innovation here is that our formulations make it possible for profoundly analyzing 

the internal structural information. The multi-scale and physics based geometric features 

may offer more statistical power on the topological change analysis in grey matter 

morphology as preclinical AD biomarkers.

2 Methods

Fig. 1 shows the pipeline of the volumetric morphology signature system.

2.1 Theoretical Background

The heat kernel diffusion on differentiable manifold M with Riemannian metric is governed 

by the heat equation:

(1)

where f(x, t) is the heat distribution of the volume at the given time. Given an initial heat 

distribution F: M→ ℛ, let Ht(F) denotes the heat distribution at time t, and limt→0 Ht(F) = 

F. H(t) is called the heat operator. Both ΔM and Ht share the same eigenfunctions, and if λi 

is an eigenvalue of ΔM, then e−λit is an eigenvalue of Ht corresponding to the same 

eigenfunction.
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For any compact Riemannian manifold, there exists a function lt(x, y): ℝ+ × M × M → ℝ, 

satisfying the formula

(2)

where dy is the volume form at y ∈ M. The minimum function lt(x, y) that satisfies Eq. 2 is 

called the heat kernel [6], and can be considered as the amount of heat that is transferred 

from x to y in time t given a unit heat source at x. In other words, lt(x, ·) = Ht(δx) where δx is 

the Direc delta function at x: δx(z) = 0 for any z ≠ x and ∫M δx(z) = 1.

According to the theory of the spectral analysis, for compact M, the heat kernel has the 

following eigen-decomposition heat diffusion distance:

(3)

where λi and ϕi are the ith eigenvalue and eigenfunction of the Laplace-Beltrami operator, 

respectively. The heat kernel lt(x, y) can be interpreted as the transition density function of 

the Brownian motion on the manifold.

2.2 Discrete Multi-Scale Volumetric Morphology Signature

On volumetric structure represented by a tetrahedral mesh, we can estimate the boundary 

point pairs (x and y) based on the heat propogation, e.g. [5]. Then we can compute the 

eigenfunctions and eigenvalues of Lp and then estimate the heat diffusion distance lt(x, y) by 

evaluating Eqn. 3. We define the evaluation of lt(x, y) between surface point pairs, x and y, 

with varying time t, as the volumetric morphology signature (VMS). To establish 

measurements on the unified template for statistical analysis, the weighted spherical 

harmonic representation [7] is applied to build surface correspondence between the different 

surfaces.

In order to reveal the internal structure features in a way that best explains the variance in 

the VMS, we apply a point distribution model(PDM) [8] to extract the most informative 

features. Given a group of N tetrahedral meshes, we apply the eigenanalysis of the 

covariance matrix Σ of the VMS as follows:

(4)

where Ti is the VMS of the ith tetrahedral mesh and T̅ is the mean VMS of N objects. The 

columns of P hold eigenvectors, and the diagonal matrix D holds eigenvalues of Σ. The 

eigenvectors in P can be ordered according to respective eigenvalues, which are proportional 

to the variance explained by each eigenvector. The first few eigenvectors (with greatest 

eigenvalues) often explain most of variance in the VMS data. Now any volumetric 

morphology signature Ti can be obtained using
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(5)

where vi is a vector containing the principal components which are called the internal 

structure features. It can be used to represent the principal internal structure information of 

the individual tetrahedral mesh in a new basis of the deformation models.

2.3 Internal Structure Feature Selection

Generally speaking, the additional features are theoretically helpful to improve the classifier 

performance. However, in practice, each additional feature adds a parameter to the classifier 

model which needs to be estimated, and misestimations that result from the less informative 

features can actually degrade performance. This is a form of overfitting. So there is a need to 

order the features from more information to less information. This tactics can improve the 

classification accuracy. We adopt a t-test on each feature and obtain a p-value associated 

with the statistical group difference. Thus, a lower p-value implies a more significant 

feature. In the following experiments, we will test the classification accuracies according to 

two different feature orderings.

3 Experimental Results

3.1 Synthetic Data Results

We conduct classification experimental studies on a synthetic data set. Fig. 2 shows two 

classes of 12 synthetic volumetric geometrical structures each, Class 1 shows the cylinders 

with a sphere hole and Class 2 shows the cylinders with a bump-sphere hole. First we 

compute the streamlines between the outer cylinder surface and the inner spherical surface 

and establish the measurements on the unified template [5]. Then the VMS can be obtained 

with Eqn. 3. Fig. 3(a) shows a volumetric tetrahedral mesh. The point pairs between the 

outer cylinder surface and the inner spherical surface is shown in (b). The VMS of this 

tetrahedral mesh is shown in (c), where the horizontal axis is log(t) and the vertical axis is 

the VMS value. Apply Eqn. 4 and Eqn. 5, we obtain the first 23 internal structure features of 

every object. Then the features have been scaled to [−1, +1] before the classification. The 

main advantage of scaling is to avoid attributes in greater numeric ranges dominating those 

in smaller numeric ranges. In (d), we validate the classification performance of the two 

different feature orderings using the leave-one-out cross-validation method based on the 

SVM classifier. One is the standard ordering according to the order of the eigenvalue of the 

covariance matrix Σ generated from the training data, which indicates the variance amount 

of every feature from large to small. The other is the p-value ordering of the features from 

the training data. From the results, we can see that the internal structure features based on 

VMS have the high discriminative power. The mean accuracy of p-value ordering is 93.7% 

and the mean accuracy of standard ordering is 84.8%. And the two orderings can achieve the 

best accuracy 100% with fewer features. Moreover, the main computation is the 

eigenanalysis of the covariance matrix. By using the Gram matrix for eigenanalysis, the 

computational time for PDM can be improved to  time. ns is the number of shapes 

and nl is the resolution.
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In addition, we illustrate the importance of the feature selection in the projection space. The 

direction vectors of the classification hyperplane from the training data can be calculated as 

, where xδ = x − x̄ indicates the heat diffusion distance difference 

between the individual and the average, proj_value is the projected value and w is the 

direction vectors of the classification hyperplane. Fig. 4 shows the classification results in 

the projection space, with the horizontal coordinate representing the projection data, and 

with the vertical coordinate used for the posterior probability of belonging to the particular 

class, (a) and (b) represent the training data distributions with the first ith feature number 

(i.e., 6 and 23) according to the p-value respectively. The symbol ◊ and ⋇ indicate the two 

classes. From the results we can see that the phenomenon of the data piling has become 

apparent with the increasing of the feature number, (c) and (d) are the test classification 

results based on the first 6 and 23 features respectively. And the symbol ◊ and ⋇ with red 

mark indicate the misclassification results. From the results in Fig. 4, when all the features 

are used in training data, is associated with low in-sample error rate and high out-of-sample 

error rate.

3.2 Application to Alzheimer's Disease

To validate whether VMS can improve the statistical power on brain MRI analysis, we apply 

it to study the volumetric differences associated with AD and Control groups on the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset [9]. We used the baseline T1-

weighted images from 81 subjects consisting of 41 healthy controls (CTL) and 40 patients of 

Alzheimer's (AD). We apply FreeSurfer software [10] for skull stripping, tissue 

segmentation and surface reconstruction. Given the white matter and pial surfaces, the 

tetrahedral meshes are generated by an adaptively sized tetrahedral mesh modeling method 

[11]. After the boundary point pairs are estimated, we resample all the brain surface to a 

common template which contains 40962 sample points. This allows us to compare the VMS 

measurements across different cortical surfaces. Next we apply the point distribution model 

(PDM) to the VMS to obtain vi which contains 80 internal structure features for every 

individual grey matter tetrahedral mesh. After the scaling process, all the features are scaled 

to the interval [−1, 1]. We apply a t-test on each feature and obtain a p-value associated with 

the test statistic. The results are shown in Fig. 5 (a). The second feature corresponds to p = 

2.29×10−9, the third and fourth features correspond to p = 1.34×10−6 and p = 1.51 × 10−6 

respectively, and for all the other features are above 1 × 10−3. Based on the SVM classifier, 

we investigate the leave-one-out cross-validation accuracies using the first i features from 

the two different ordering of the features. The results are shown in Fig. 5 (b). From the 

results, we can see that the best accuracy (97.5%) can be achieved using few (e.g., 34) 

features based on the p-value ordering, while on the standard ordering, a good accuracy 

(88.9%) can be achieved using 42 features. Moreover, the mean cross-validation accuracy 

based on the p-value ordering is higher about (5%) than the standard ordering. From the 

Eqn. 5, the specific eigenvector has the weights to create the specific feature. Therefore, the 

most informative feature should correspond to the specific eigenvector with the most 

significant contribution for the group differences. We compute the L2 norm of the specific 

eigenvector to obtain these weights according to the template surface. The weights from the 

first four eigenvectors are shown on the mean outer surface in Fig. 5. From (c) to (f), they 

are the computed weights from the first eigenvector to the fourth eigenvector. Large weights 
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correspond to locations with the most discrimination power. The weights are later color 

coded on the surface template point with the group difference p-map by different principal 

components. The values increase as the color goes from blue to yellow and to red. Because 

the second principal component has the smallest p-value, a significant difference exists in 

the medial temporal lobe region represented in Fig. 5 (d), supporting the fact that the medial 

temporal atrophy is the hallmark of AD disease.

3.3 Comparison with Freesurfer Thickness Feature

In this section, we compare the classification performance about the VMS and the thickness 

based on the Freesurfer method [10]. Here we apply the receiver operating characteristic 

(ROC) analysis to compare the discriminative power of the two analysis framework, which 

is created by plotting the true positive rate against the false positive rate at various threshold 

settings. After obtaining the thickness values on the unified template, we apply the PDM to 

the thickness to obtain vi as the thickness feature. Through varying the threshold value 

which can determine the SVM classifier boundary, we can obtain the true positive rate, false 

positive rate and draw a ROC curve. The ROC curve is shown in Fig. 6 and the legend 

shows the two data set, the area under the ROC curve (AUROC) and the number of features 

used. Here we choose 42 VMS features and 55 cortical thickness features computed by 

Freesurfer to achieve the maximum AUROC according to the p-value feature selection 

scheme. And a completely random guess would give a diagonal line from the left bottom to 

the top right corners. The points above the diagonal represent good clas sification results 

(better than random), points below the line represent poor results (worse than random). From 

the result, we can see that the features of the VMS have the higher discriminative power than 

the cortical thickness.

A key reason for better classification is that VMS can not only compute geodesic distance 

between the point pairs, but it also compare the immediate neighboring volume changes 

along the geodesics. It may provide new insights to grey matter morphology study.

4 Conclusions and Future Work

Based on heat kernel analysis, we propose a novel multi-scale volumetric morphology 

signature. This has many applications in brain imaging research. Whether or not our new 

method provides a more relevant shape analysis power than those afforded by other criteria 

(folding, surface curvature, cortical thickness) requires careful validation for each 

application. Because different geometric properties produce different models, we plan to 

compare them in future for detecting subtle differences in brain structure for preclinical AD 

research.
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Fig. 1. 
Pipeline of the volumetric morphology signature computation.
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Fig. 2. 
Two classes of synthetic volumetric geometrical structures.
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Fig. 3. 
Illustration of streamlines, VMS and classification accuracies on the synthetic cylinder with 

inner spherical hole.
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Fig. 4. 
The training and test data classification results with the different feature number in the 

projection space.
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Fig. 5. 
Illustration of the SVM classification accuracy and the contrubutions from the four 

eigenvectors color coded on the mean outersurface of AD and Control subjects.
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Fig. 6. 
ROC analysis for comparison using VMS and thickness features.
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